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Blowout bifurcation with non-normal parameters in population dynamics
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Interesting dynamic behaviors have been associated with the transverse stability of an invariant subspace
(e.g., riddled basins or on-off intermittencyrecently, these complex behaviors have been generalized to cases
of models with non-normal parameters showing that these behaviors might be widespread. In this Brief Report
I demonstrate this type of complex dynamics in models of interacting populations for which the invariant
subspace is defined by species extinction. In the context of the current biodiversity crisis, implications of these
behaviors for population biology are discussed.
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Recently, it has been shown that a dynamical system posng species can invade and coexist with other species. Thus,
sessing invariant subspaces of topological dimension smalléhis topic appears of major interest for population biology in
than the dimension of the full phase space may exhibit surthe context of the current biodiversity crisis associated with a
prising dynamics with an exacerbated level of unpredictabilmarkedly reduced species diversity, a high rate of extinction
ity [1]. In these systems, several complex attractors coexigind invasion, and the puzzle of rare spe¢iE3).
and tiny variations in initial conditions induce a random  Previous investigations of blowout bifurcation focused on
switch between the different asymptotic attractors. DependN€ case with normal parameters i.e., parameters leaving the
ing on the stability of these invariant subspaces, differenflynamics on the invariant manifold unchanged. However in
behaviors may arise: riddled basifs-4], intermingled ba- natural systems, the dynamics more commqnly encountered
sins [5], attractor bubbling1,6], and on-off intermittency are govgrn_ed by non-normal parameters, which vary the dy-
[1,7] namics inside as well as outside the invariant subspace. Then

"These phenomena are related to a type of bifurcatioi® dynamics in the invariant subspace is not decoupled from
called blowout bifurcation[1]. This bifurcation is defined in e dynamics in the dimensions transverse to it and the sys-

terms of changes in the transverse stability of the invarianﬁem has a nonske_w product structure. .ASWh'n and coauthors
subspace. Quantitatively, at the blowout bifurcation point, 11] have generalized blowout bifurcation to these systems

the largest transverse asymptotic Lyapunov expone ith non-normal parameters and nonskew product structure.
changes its sign. Blowout bifurcation can be understood b’fhey argued that blowout blfurcatl_on ?”d the assouated dy-
amics could be more pervasive in this case since they can

considering the distributions of finite time fluctuations in the dl f whether the d s in the i ant
largest instantaneous Lyapunov exponent for perturbation%ccu.r regardiess of whether the dynamics in he nvarian
manifold is stable or unstable, nonchaotic or chaotic.

transverse to the invariant subspf8¢ There exists a spread . . .
of the distribution of the transverse instantaneous Lyapunoy. The purpose of this study is to analyze blowout bifurca-

exponent which accounts for the existence of special dyna lon with non-normal parameters in models of interacting

ics such as riddled basins or on-off intermittency. When théaog_ulatths. C?‘;Ott')c génalm'?ﬁ. in population blI(t)Iogy |sta
invariant subspace is slightly stabl® (<0), there are still subject of great debafd2]. In this paper our results do not
depend on the presence of chaotic dynamics in the invariant

initial conditions for which the transverse instantaneous ubspace: this leads to several phenomena associated with
Lyapunov exponent becomes positive and trajectories movi pace, P

to another attractor. In this case, one may have basin rioI- e blowout bifurcations that might be more likely from an

diing. Conversely, one can observe on-off imermittency'eC(')l'lggiIr::\i-!.-sptiogze()fb\l/(lﬁvvzut bifurcation with non-normal pa-
when this subspace is slightly unstabla, &0). But 9 P

whether basin riddling or on-off intermittency occurs is also:ﬁrmegt%r;fépegt]emCOE:jS;SOf_I_'E;erf?rgttmr?qo%%%ug&%?; Iisc?ﬂ(s;der
a function of the dynamics away from the invariant sub- :

space Franke-Yakubu modéglL3] for competition between two spe-
Ridaling and on-off intermittency have received much re_cies affected by both intra- and interspecific competition.

cent attentiof1-7], because they are fairly common in sys- E-Zhg] Q:]%dreelalgsknown to have riddled basins of attraction
tems with symmetry or in spatiotemporal chaotic systems:~’
This type of complex dynamics has also been found in
simple models of interacting populatiof,9]. Competition
between different species can be modeled as a dynamical 0
system with an invariant subspace corresponding to the ex- y(t+1)= L (1)
tinction of one(or more species. The loss of stability of the CotX(t) +y(t)’

attractor in the invariant subspace means that the correspond- o
wherer,c; are the intrinsic growth rates argjc, are con-

stants proportional to the carrying capacity of the environ-
*Email address: bcazelle@snv.jussieu.fr ment.

X(t+1)=x(t)exp{r —s[x(t)+y(t)]},
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Because ecological systems are unavoidably spatial, For these models, the local dynami@sompetition be-
analyses of population dynamics require the inclusion of theween speciésand possible dispersion between different
spatial dimension. | thus analyzed the two-patch model propatches determine the ecological dynamics of the commu-
posed by Holt and McPeedKk 4] where individuals disperse nity. In this context, the invariant subspace is defined by the
at a constant rate between the two patChes and experien@ﬁtinction of they orvy; Species_ The dynamics of such sys-
density dependence in each patch. The Holt-McPeek modeéms may be understood by examining the sign structure of
is given by the two largest asymptotic Lyapunov exponents. One of
them, the tangential Lyapunov exponext, describes the
evolution on the invariant subspace. The second, the largest
transverse Lyapunov exponext , characterizes the evolu-

Xq(t+1) = (1= dy)xa (O FL (1) + dxa(t) FL(t),

ya(t+1)=(1=dy)ya()fy(t)+dyya(t) Fi(t), tion transverse to the subspace.
| | As bifurcation parameters, | chose the growth ratg )
Xa(t+1)=(1—dy)xa(t) f5(1) +dexa (1) F3 (1), as well as the dispersion rate,) for models I, II, and Ill,

respectively. These non-normal parameters directly influence
ya(t+1)=(1—dy)y()f5(t) +dyy;,(DFy(t), (2  the dynamics, in the invariant subspdte r.r,), and in the
full phase spacéfor d,). Examples of the evolution of |
where x; and y; are the two species in patch f!(t) and\ (computed as i2,8]) with these bifurcation param-
=f(x,(t),y;(t)) is the density dependent growth function, eters are presented in Fig. 1. These numerical simulations
andd, , is the species dependent dispersion rate. The aboveveal the typical characteristics of the blurred blowout bi-
model (Il) assumes that!=f,, following the Ricker model furcations with non-normal parametel]: (i) continuous
[15] but nonsmooth fluctuations through O ®f [see the inset
Fig. 1(0)]; (i) numerous windows with a negativg value
associated with the periodic attractor. This is associated in
3 parameter space with the existence of numerous regions
where the attractor within the invariant subspace is periodic
with k; the carrying capacity ang the growth rate of patch and transversely unstable, in contrast to the usual cases with
3 normal parameterfl,2].
| have also studied a similar modgll ) [16] with another An e>;]otic behav:orha}ssociated with theﬁblowout bifurca-

; : ) tions, when\ | is slightly positive, is on-off intermittency
form of density dependence functmihzf”, ' [1]. These behaviors have been generalized in the cases of
non-normal parameters by in-out intermitteridy]. This dy-

’ (4) namics is shown in Fig.(a,b, wherey(t) versus the itera-

1+a;(x+y;)P tion t is plotted. One sees that there are iteration intervals
during whichy(t) stays neary(t)=0 (the “off” state de-

wherer; is the intrinsic growth rateg; is the inverse of the fined by the extinction of thg specie§ but there are also

carrying capacity, antb; reflects the intensity and the form intermittent bursts ofy(t) (the “on” state defined by the

of the density dependent competition. invasion ofy species This is a typical consequence of the

Xjtyi
S )

fn(Xiayi):eXF{ri

Fi
fr (%i,yi) =
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fact that, despite its positive average,(t) has finite time space leads to riddled basif®. Figure 3 displays the com-
fluctuations that are negative, which makes the invariant sulplex fractal boundary between the initial conditions leading
space locally stable and attracts the trajectory toward théo each of the two attractorglefined by the coexistence or
“off” state intermittently. This temporal evolution is re- the extinction of they species In the case of these riddled
peated in an irregular and aperiodic manner; in the meantimbasins(or partially riddled basins the basins have fractal

it is characterized by well-defined power laji/. In particu-  boundaries where almost every point is arbitrarily close to a
lar, the probability distribution of the “off” phase$(D) point in the other basin and this behavior persists regardless

depends on their duratioB as P(D)xD” [17], with 8= of the scale examine(Fig. 3). But, in contrast to cases with
—3/2 a universal scaling coefficiefif]. Examples of these normal parameterg?2], varying a non-normal parameter
relations are shown in Fig.(€d). makes it possible to observe riddled basins, even in the pres-

Another behavior associated with blowout bifurcations isence of a periodic attractor in the invariant subspace.
riddled basins of attractiofl,2]. As the transverse Lyapunov ~ These results show that blowout bifurcation and the asso-
exponent of the invariant subspace is slightly positive, theciated complex dynamicgriddled basins, on-off intermit-
loss of transverse stability of orbits embedded in that subtency) are present in models of interacting population even

®
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15 (@ population biology, particularly considering the actual biodi-
o versity crisis[10]. All these results are supported by various
g 1 ecological observations. One of these is the temporal dynam-
2 ics of rare species involved in intermittent rarity, that is, the
o . . .
205 alternation of long periods of marked scarcity and short out-
breaks of high abundance in a seemingly unpredictable way.
0 This kind of dynamics has been observed in species of great
200 4°°Weei°° 800 1000 interest to population biologists; however, the mechanisms
0 that underlie intermittent rarity remain poorly understood.
) One possible explanation could be on-off intermittency. Pre-
05}, liminary results are shown in Fig. 4 for the dynamics of a
g 1 ¢ phytoplankton population. Figurg@ displays the observed
:::_1 5 g dynamics and Fig. @) the distribution of rarity(“off” )
< phases. Despite scanty data, this distribution is remarkably
-2 ° well fitted by the theoretical distribution with the universal

scaling coefficieni3= —3/2 [Fig. 4(b)]. On the other hand,
dynamics with riddled basins provide a working hypothesis
to explain both the differences and the similarities observed
FIG. 4. On-off intermittency in a marine phytoplankton popula- among the time series of replicated experiments. For ex-
tion. (a) Weekly averages of daily counts of diatorfraillions of ~ ample, different dynamics for various replicates of laboratory
cells per litej collected at the Scripps pidCalifornia) between  cultures have been observed in the case of the flour beetle
1920 and 193920]. (b) Distribution of rarity (“off” ) phases of [18] and in the case of host-parasitoid interactiphg).
durationD. The fitted 3~ — 1.58 and the straight line corresponds  The findings reported here stressed that simple determin-
to the theoretical distribution with sloggé= —3/2 istic models can have outcomes that are for all practical pur-

with non-normal parameters. Along the lines suggested b\;é)oses as stochastic as experimental observations, and one
Ashwin and co-authors, this implies that the complex behavs hould keep in mind that apparently stochastic variability in

iors associated with the blowout bifurcation are more univer-the observations of ecological experiments may have deter-

sal in population models since they are not limited to normafﬂmlsnc grounds.

parameters. | thank Samuele Bottani and Lewi Stone for stimulating
These results may have important practical consequencelscussions and Dany Kaplan who provided me with the dia-

[8,9] since these sorts of behaviors are of great interest itom data.
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