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Blowout bifurcation with non-normal parameters in population dynamics
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Interesting dynamic behaviors have been associated with the transverse stability of an invariant subspace
~e.g., riddled basins or on-off intermittency!. Recently, these complex behaviors have been generalized to cases
of models with non-normal parameters showing that these behaviors might be widespread. In this Brief Report
I demonstrate this type of complex dynamics in models of interacting populations for which the invariant
subspace is defined by species extinction. In the context of the current biodiversity crisis, implications of these
behaviors for population biology are discussed.

DOI: 10.1103/PhysRevE.64.032901 PACS number~s!: 87.23.Cc, 05.45.2a, 87.10.1e, 05.45.Tp
o
al
u

bi
x
m
n
en

tio

ian
in
e
b

he
io
d
no
am
th

u
o
ri
cy

so
b

re
s-

i

ic
e

e
on

hus,
in
h a
ion

on
the
in
red
dy-
hen

rom
sys-
ors
ms
ure.
dy-
can
ant

a-
ng
a

t
iant
with
n

a-
der

-
n.

on

n-
Recently, it has been shown that a dynamical system p
sessing invariant subspaces of topological dimension sm
than the dimension of the full phase space may exhibit s
prising dynamics with an exacerbated level of unpredicta
ity @1#. In these systems, several complex attractors coe
and tiny variations in initial conditions induce a rando
switch between the different asymptotic attractors. Depe
ing on the stability of these invariant subspaces, differ
behaviors may arise: riddled basins@1–4#, intermingled ba-
sins @5#, attractor bubbling@1,6#, and on-off intermittency
@1,7#.

These phenomena are related to a type of bifurca
calledblowout bifurcation@1#. This bifurcation is defined in
terms of changes in the transverse stability of the invar
subspace. Quantitatively, at the blowout bifurcation po
the largest transverse asymptotic Lyapunov expon
changes its sign. Blowout bifurcation can be understood
considering the distributions of finite time fluctuations in t
largest instantaneous Lyapunov exponent for perturbat
transverse to the invariant subspace@3#. There exists a sprea
of the distribution of the transverse instantaneous Lyapu
exponent which accounts for the existence of special dyn
ics such as riddled basins or on-off intermittency. When
invariant subspace is slightly stable (l'&0), there are still
initial conditions for which the transverse instantaneo
Lyapunov exponent becomes positive and trajectories m
to another attractor. In this case, one may have basin
dling. Conversely, one can observe on-off intermitten
when this subspace is slightly unstable (l'*0). But
whether basin riddling or on-off intermittency occurs is al
a function of the dynamics away from the invariant su
space.

Riddling and on-off intermittency have received much
cent attention@1–7#, because they are fairly common in sy
tems with symmetry or in spatiotemporal chaotic system
This type of complex dynamics has also been found
simple models of interacting populations@8,9#. Competition
between different species can be modeled as a dynam
system with an invariant subspace corresponding to the
tinction of one~or more! species. The loss of stability of th
attractor in the invariant subspace means that the corresp
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ing species can invade and coexist with other species. T
this topic appears of major interest for population biology
the context of the current biodiversity crisis associated wit
markedly reduced species diversity, a high rate of extinct
and invasion, and the puzzle of rare species@10#.

Previous investigations of blowout bifurcation focused
the case with normal parameters i.e., parameters leaving
dynamics on the invariant manifold unchanged. However
natural systems, the dynamics more commonly encounte
are governed by non-normal parameters, which vary the
namics inside as well as outside the invariant subspace. T
the dynamics in the invariant subspace is not decoupled f
the dynamics in the dimensions transverse to it and the
tem has a nonskew product structure. Aswhin and coauth
@11# have generalized blowout bifurcation to these syste
with non-normal parameters and nonskew product struct
They argued that blowout bifurcation and the associated
namics could be more pervasive in this case since they
occur regardless of whether the dynamics in the invari
manifold is stable or unstable, nonchaotic or chaotic.

The purpose of this study is to analyze blowout bifurc
tion with non-normal parameters in models of interacti
populations. Chaotic dynamics in population biology is
subject of great debate@12#. In this paper our results do no
depend on the presence of chaotic dynamics in the invar
subspace; this leads to several phenomena associated
the blowout bifurcations that might be more likely from a
ecological point of view.

To investigate blowout bifurcation with non-normal p
rameters in the case of interacting populations, I consi
three different models. The first model~I! studied is the
Franke-Yakubu model@13# for competition between two spe
cies affected by both intra- and interspecific competitio
This model is known to have riddled basins of attracti
@2,8# and reads

x~ t11!5x~ t !exp$r 2s@x~ t !1y~ t !#%,

y~ t11!5
c1y~ t !

c21x~ t !1y~ t !
, ~1!

where r ,c1 are the intrinsic growth rates ands,c2 are con-
stants proportional to the carrying capacity of the enviro
ment.
©2001 The American Physical Society01-1
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FIG. 1. Blowout bifurcation in models of in-
teracting populations. Estimated transverse (lT

[l') and tangential (l i) Lyapunov exponents
computed as functions of non-normal parame
studied for model I~a,b!, model II ~c,d!, and
model III ~e,f!. The parameters used ares
50.10, c1520.25, c251.20 for model I, d1

50.175, k15100, d250.025, r 253.50, k2575
for model II, and r 154.0, a150.10, b156.67,
d250.05,r 254.0, a250.10,b256.67 for model
III.
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Because ecological systems are unavoidably spa
analyses of population dynamics require the inclusion of
spatial dimension. I thus analyzed the two-patch model p
posed by Holt and McPeek@14# where individuals disperse
at a constant rate between the two patches and experi
density dependence in each patch. The Holt-McPeek m
is given by

x1~ t11!5~12dx!x1~ t ! f 1
l ~ t !1dxx2~ t ! f 2

l ~ t !,

y1~ t11!5~12dy!y1~ t ! f 1
l ~ t !1dyy2~ t ! f 2

l ~ t !,

x2~ t11!5~12dx!x2~ t ! f 2
l ~ t !1dxx1~ t ! f 1

l ~ t !,

y2~ t11!5~12dy!y2~ t ! f 2
l ~ t !1dyy1~ t ! f 1

l ~ t !, ~2!

where xi and yi are the two species in patchi, f i
l(t)

5 f l
„xi(t),yi(t)… is the density dependent growth functio

anddx,y is the species dependent dispersion rate. The ab
model ~II ! assumes thatf i

l5 f II following the Ricker model
@15#

f II ~xi ,yi !5expF r i S 12
xi1yi

ki
D G ~3!

with ki the carrying capacity andr i the growth rate of patch
i.

I have also studied a similar model~III ! @16# with another
form of density dependence functionf i

l5 f III :

f III ~xi ,yi !5
r i

11ai~xi1yi !
bi

, ~4!

wherer i is the intrinsic growth rate,ai is the inverse of the
carrying capacity, andbi reflects the intensity and the form
of the density dependent competition.
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For these models, the local dynamics~competition be-
tween species! and possible dispersion between differe
patches determine the ecological dynamics of the com
nity. In this context, the invariant subspace is defined by
extinction of they or yi species. The dynamics of such sy
tems may be understood by examining the sign structure
the two largest asymptotic Lyapunov exponents. One
them, the tangential Lyapunov exponentl i , describes the
evolution on the invariant subspace. The second, the lar
transverse Lyapunov exponentl' , characterizes the evolu
tion transverse to the subspace.

As bifurcation parameters, I chose the growth rate (r ,r 1)
as well as the dispersion rate (d1) for models I, II, and III,
respectively. These non-normal parameters directly influe
the dynamics, in the invariant subspace~for r ,r 1), and in the
full phase space~for d1). Examples of the evolution ofl'

andl i ~computed as in@2,8#! with these bifurcation param
eters are presented in Fig. 1. These numerical simulat
reveal the typical characteristics of the blurred blowout
furcations with non-normal parameters@11#: ~i! continuous
but nonsmooth fluctuations through 0 ofl' @see the inset
Fig. 1~c!#; ~ii ! numerous windows with a negativel i value
associated with the periodic attractor. This is associated
parameter space with the existence of numerous reg
where the attractor within the invariant subspace is perio
and transversely unstable, in contrast to the usual cases
normal parameters@1,2#.

An exotic behavior associated with the blowout bifurc
tions, whenl' is slightly positive, is on-off intermittency
@1#. These behaviors have been generalized in the case
non-normal parameters by in-out intermittency@11#. This dy-
namics is shown in Fig. 2~a,b!, wherey(t) versus the itera-
tion t is plotted. One sees that there are iteration interv
during which y(t) stays neary(t)50 ~the ‘‘off’’ state de-
fined by the extinction of they species!, but there are also
intermittent bursts ofy(t) ~the ‘‘on’’ state defined by the
invasion ofy species!. This is a typical consequence of th
1-2
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FIG. 2. On-off intermittency in models of in-
teracting populations.~a! and~b! are examples of
time series generated with random initial cond
tions by the models I and II, respectively.~a! r
52.916, s50.10, c1520.25, c251.20, andl'

'0.033; ~b! d150.175, r 153.414, k15100, d2

50.025, r 253.50, k2575, andl''0.010. ~c!
and~d! are the corresponding distributions of th
‘‘off’’ phases ~defined by the extinction of they
species! of duration D. The straight line corre-
sponds to the theoretical distribution with slop
b523/2.
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fact that, despite its positive average,l'(t) has finite time
fluctuations that are negative, which makes the invariant s
space locally stable and attracts the trajectory toward
‘‘off’’ state intermittently. This temporal evolution is re
peated in an irregular and aperiodic manner; in the mean
it is characterized by well-defined power laws@7#. In particu-
lar, the probability distribution of the ‘‘off’’ phasesP(D)
depends on their durationD as P(D)}Db @17#, with b5
23/2 a universal scaling coefficient@7#. Examples of these
relations are shown in Fig. 2~c,d!.

Another behavior associated with blowout bifurcations
riddled basins of attraction@1,2#. As the transverse Lyapuno
exponent of the invariant subspace is slightly positive,
loss of transverse stability of orbits embedded in that s
03290
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space leads to riddled basins@3#. Figure 3 displays the com
plex fractal boundary between the initial conditions leadi
to each of the two attractors~defined by the coexistence o
the extinction of they species!. In the case of these riddle
basins~or partially riddled basins!, the basins have fracta
boundaries where almost every point is arbitrarily close t
point in the other basin and this behavior persists regard
of the scale examined~Fig. 3!. But, in contrast to cases with
normal parameters@2#, varying a non-normal paramete
makes it possible to observe riddled basins, even in the p
ence of a periodic attractor in the invariant subspace.

These results show that blowout bifurcation and the as
ciated complex dynamics~riddled basins, on-off intermit-
tency! are present in models of interacting population ev
t-

y
nd

e-
FIG. 3. Riddled basins in models of interac
ing populations.~a! Basin of attraction in the case
of model I with r 52.86, s50.10, c1520.25,
c251.20, l''20.059, andl i'20.219. White
dots correspond to initial conditions attracted b
the coexistence attractor; black dots correspo
to initial conditions attracted by the attractor d
fined by the extinction of they species.~b! En-
largement of~a!. ~c! Basin of attraction in the
case of model III withd150.225, r 154.0, a1

50.10, b156.67, d250.05, r 254.0, a250.10,
b256.67, l''20.0001, andl i'20.434. ~d!
Enlargement of~c!.
1-3
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with non-normal parameters. Along the lines suggested
Ashwin and co-authors, this implies that the complex beh
iors associated with the blowout bifurcation are more univ
sal in population models since they are not limited to norm
parameters.

These results may have important practical conseque
@8,9# since these sorts of behaviors are of great interes

FIG. 4. On-off intermittency in a marine phytoplankton popu
tion. ~a! Weekly averages of daily counts of diatoms~millions of
cells per liter! collected at the Scripps pier~California! between
1920 and 1939@20#. ~b! Distribution of rarity ~‘‘off’’ ! phases of

durationD. The fittedb̂'21.58 and the straight line correspond
to the theoretical distribution with slopeb523/2
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population biology, particularly considering the actual biod
versity crisis@10#. All these results are supported by vario
ecological observations. One of these is the temporal dyn
ics of rare species involved in intermittent rarity, that is, t
alternation of long periods of marked scarcity and short o
breaks of high abundance in a seemingly unpredictable w
This kind of dynamics has been observed in species of g
interest to population biologists; however, the mechanis
that underlie intermittent rarity remain poorly understoo
One possible explanation could be on-off intermittency. P
liminary results are shown in Fig. 4 for the dynamics of
phytoplankton population. Figure 4~a! displays the observed
dynamics and Fig. 4~b! the distribution of rarity~‘‘off’’ !
phases. Despite scanty data, this distribution is remarka
well fitted by the theoretical distribution with the univers
scaling coefficientb523/2 @Fig. 4~b!#. On the other hand
dynamics with riddled basins provide a working hypothe
to explain both the differences and the similarities obser
among the time series of replicated experiments. For
ample, different dynamics for various replicates of laborato
cultures have been observed in the case of the flour be
@18# and in the case of host-parasitoid interactions@19#.

The findings reported here stressed that simple determ
istic models can have outcomes that are for all practical p
poses as stochastic as experimental observations, and
should keep in mind that apparently stochastic variability
the observations of ecological experiments may have de
ministic grounds.

I thank Samuele Bottani and Lewi Stone for stimulati
discussions and Dany Kaplan who provided me with the d
tom data.
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